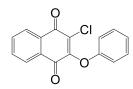
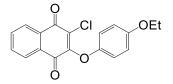

Supplementary Chemistry: Synthesis and Characterization

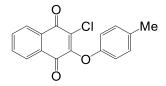
Chloro-naphthoquinone derivatives


Methyl 1,4-bis(2-(diethylamino)ethoxy)-2-naphthoate, MDN-6

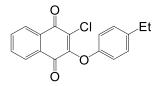
The synthesis procedure of MDN-6 started with the addition of a solution of methyl 1,4dihydroxy-2-naphthoate (500 mg, 2.29 mmol) and 2-diethylaminoethyl chloride hydrochloride (1.18 g, 6.87 mmol) in DMF (10 mL) K₂CO₃ (6.33 g, 45.83 mmol) and then the mixture stirred for 16 h at room temperature. The reaction mixture was later poured into an ice-water (40 mL) and extracted into CH₂Cl₂ (1 x 50 mL). The mixed organic layers were rinsed with water (1 x 50 mL), desiccated over anhydrous Na₂SO₄ and evaporated to give brown residue that was further purified using column chromatography. (MeOH/CH₂Cl₂ = 0.5/9.5) as eluent to afford methyl 1,4-bis(2-(diethylamino)ethoxy)-2-naphthoate (150 mg, 16%) as colorless oil; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 8.49 (d, *J* = 8.3 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.0 (s, 1H), 7.85-7.82 (m, 1H), 7.75-7.72 (m, 1H), 4.09 (t, *J* = 5.95 Hz, 4H), 3.90 (s, 3H), 2.88 (t, *J* = 6.0 Hz, 4H), 2.52-2.50 (m, 8H), 1.0-0.94 (m, 12H) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 165.2, 156.7, 134.3, 130.8, 130.0, 128.2, 12 7.1, 124.9, 120.2, 116.3, 74.9, 52.9, 47.3, 12.3 ppm.


2-chloro-3-(4-methoxyphenoxy)-1,4-naphthoquinone, N15

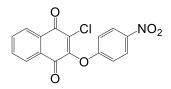
To a solution of 227 mg of 2,3-dichloronaphthoquinone (1 mmol) and 149 mg of 4methoxyphenol (1.2 mmol) in THF (10 mL), 325 mg of Cs_2CO_3 (1 mmol) was added. At the room temperature, the reaction mixture was stirred for 76 hrs. H₂O and ethyl acetate were used partition the mixture. The organic phase was rinsed with brine, dried (MgSO₄), and evaporated under reduced pressure to obtain a residue. This residue was purified by column chromatography on silica gel (hexane/EtOAc = 9/1) to afford 289 mg (92%) of 2-chloro-3-(4methoxyphenyloxy)-1,4-naphthoquinone. mp 113°C; ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 8.20 (dd, *J* = 9.0, 2.2 Hz, 1H), 8.03 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.79-7.75 (m, 2H), 6.97 (d, *J* = 6.0 Hz, 2H), 6.85 (d, *J* = 6.0 Hz, 2H), 3.79 (s, 3H) ppm; ¹³C NMR (CDCl₃): $\delta_{\rm C}$ 178.9, 178.6, 156.5, 154.3, 150.8, 134.9, 134.7, 133.4, 131.6, 131.1, 127.7, 127.5, 118.3, 115.1, 56.0 ppm; EIMS (70eV): *m/z* (rel intensity/%) = 316 (M⁺, 10), 314 (M⁺, 28), 251 (13), 191 (13), 163 (24), 135 (26), 123 (12), 99 (31), 76 (58), 63 (100), 50 (100).


2-Chloro-3-phenoxy-1,4-naphthoquinone, A29

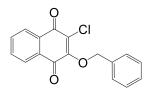
mp 138-139°C; ¹H NMR (300MHz, CDCl₃): $\delta_{\rm H}$ 8.22 (dd, J = 9.0, 2.1 Hz, 1H), 8.06 (dd, J = 9.0, 2.1 Hz, 1H), 7.80-7.76 (m, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.16 (d, J = 7.5 Hz, 1H), 7.02 (d, J = 8.1 Hz, 2H) ppm; EIMS: m/z (relative intensity/%) = 286 (M⁺, 22), 284 (M⁺, 65), 249 (52), 221 (40), 165 (44), 123 (29), 77 (97), 51 (100).


2-Chloro-3-(4-ethoxyphenoxy)-1,4-naphthoquinone, N16

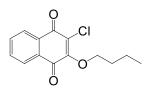
mp 145-146°C; ¹H NMR (300MHz, CDCl₃): $\delta_{\rm H}$ 8.20 (dd, J = 9.0, 2.1 Hz, 1H), 8.04 (dd, J = 9.0, 2.4 Hz, 1H), 7.79-7.75 (m, 2H), 6.96 (d, J = 6.6 Hz, 2H), 6.84 (d, J = 6.9 Hz, 2H), 4.00 (q, J = 6.9 Hz, 2H), 1.40 (t, J = 6.9 Hz, 3H) ppm; EIMS: m/z (relative intensity/%) = 328 (M⁺, 66), 299 (31), 264 (30), 236 (28), 190 (29), 162 (46), 135 (51), 99 (100), 75 (92), 64 (88).


2-Chloro-3-(p-tolyloxy)-1,4-naphthoquinone, N13

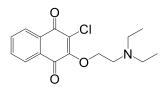
mp 146-147°C; ¹H NMR (300MHz, CDCl₃): $\delta_{\rm H}$ 8.21 (dd, J = 9.0, 2.1 Hz, 1H), 8.04 (dd, J = 9.0, 2.4 Hz, 1H), 7.79-7.75 (m, 2H), 7.13 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 2.33 (s, 3H) ppm; EIMS: m/z (relative intensity/%) = 300 (M⁺, 37), 298 (M⁺, 100), 263 (85), 235 (22), 207 (64), 179 (54), 163 (29), 135 (58), 123 (58), 99 (67), 91 (73), 65 (92).


2-Chloro-3-(4-ethylphenoxy)-1,4-naphthoquinone, N14

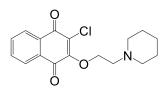
mp 121-122°C; ¹H NMR (300MHz, CDCl₃): $\delta_{\rm H}$ 8.22 (dd, J = 9.0, 2.1 Hz, 1H), 8.05 (dd, J = 9.0, 2.4 Hz, 1H), 7.80-7.76 (m, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 6.9 Hz, 2H), 2.63 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H) ppm; EIMS: m/z (relative intensity/%) = 314 (M⁺, 29), 312 (M⁺, 77), 297 (100), 277 (29), 191 (34), 163 (61), 135 (38), 99 (74), 77 (99), 51 (35).


2-Chloro-3-(4-nitrophenoxy)-1,4-naphthoquinone, N17

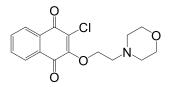
mp 181-182°C; ¹H NMR (300MHz, CDCl₃): $\delta_{\rm H}$ 8.28-8.25 (m, 3H), 8.02 (dd, J = 9.0, 2.7 Hz, 1H), 7.87-7.79 (m, 2H), 7.11 (d, J = 9.0 Hz, 2H) ppm; EIMS: m/z (relative intensity/%) = 331 (M⁺, 25), 329 (M⁺, 51), 301 (20), 220 (26), 191 (18), 163 (53), 135 (30), 99 (51), 76 (100), 63 (41), 50 (65).


2-Benzyloxy-3-chloro-1,4-naphthoquinone, N7

mp 78-80°C; ¹H NMR (300MHz, CDCl₃): $\delta_{\rm H}$ 8.14-8.07 (m, 2H), 7.74 (dd, J = 9.0, 3.0 Hz, 2H), 7.43 (d, J = 7.5 Hz, 2H), 7.38-7.35 (m, 3H), 5.65 (s, 2H) ppm; EIMS: m/z (relative intensity/%) = 300 (M⁺, 15), 298 (M⁺, 58), 263 (13), 181 (10), 123 (15), 91 (88).

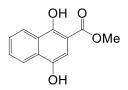

2-Butoxy-3-chloro-1,4-naphthoquinone, N8

oil; ¹H NMR (300MHz, CDCl₃): δ_H 8.14 (dd, J = 9.0, 2.7 Hz, 1H), 8.08 (dd, J = 9.0, 2.4 Hz, 1H), 4.57 (t, J = 6.3 Hz, 2H), 1.79 (quintet, J = 6.6 Hz, 2H), 1.52 (sextet, J = 7.5 Hz, 2H), 0.98 (t, J = 7.5 Hz, 3H) ppm; EIMS: m/z (relative intensity/%) = 266 (M⁺, 16), 264 (M⁺, 40), 221 (10), 208 (100), 180 (98), 173 (24), 123 (44).

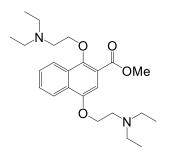

2-Chloro-3-(2-diethylaminoethoxy)-1,4-naphthoquinone, N11

oil; ¹H NMR (300MHz, CDCl₃): *δ*_H 8.14 (dd, *J* = 9.0, 2.7Hz, 1H), 8.09-8.03 (m, 1H), 7.73-7.70 (m, 2H), 4.80 (t, *J* = 4.8 Hz, 2H), 2.90 (t, *J* = 4.8 Hz, 2H), 2.58 (q, *J* = 6.9 Hz, 4H), 0.87 (t, *J* = 6.9 Hz, 6H) ppm; EIMS: *m/z* (relative intensity/%) = 310 (M⁺, 1), 308 (M⁺, 3), 250 (3), 149 (22), 111 (26), 97 (39), 83 (43), 71 (53), 57 (100).

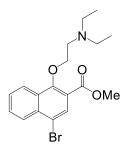
2-Chloro-3-(2-piperidin-1-ylethoxy)-1,4-naphthoquinone, N9


oil; ¹H NMR (300MHz, CDCl₃): δ_H 8.09 (dd, J = 9.0, 2.1 Hz, 1H), 8.02 (dd, J = 9.0, 2.1 Hz, 1H), 4.71 (t, J = 4.8 Hz, 2H), 2.61 (t, J = 4.8 Hz, 2H), 2.30 (br. s, 4H), 2.01 (s, 4H), 0.88-0.76 (m, 2H) ppm; EIMS: m/z (relative intensity/%) = 321 (M⁺, 38), 319 (M⁺, 100), 279 (43), 167 (9), 149 (11), 98 (32).

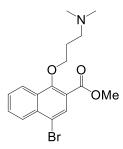
2-Chloro-3-(2-morpholin-4-ylethoxy)-1,4-naphthoquinone, N10


mp 104-105°C; ¹H NMR (300MHz, CDCl₃): $\delta_{\rm H}$ 8.17 (dd, J = 8.9, 2.4 Hz, 1H), 8.09 (dd, J = 8.9, 2.3 Hz, 1H), 7.77-7.73 (m, 2H), 4.77 (t, J = 4.6 Hz, 2H), 3.26 (t, J = 4.1 Hz, 4H), 2.69 (t, J = 4.6 Hz, 2H), 2.39 (t, J = 4.5 Hz, 4H) ppm; EIMS: m/z (relative intensity/%) = 323 (M⁺, 9), 321 (M⁺, 37), 208 (3), 163 (3), 113 (6), 100 (100), 56 (12).

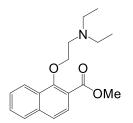
Naphthoate derivatives


Synthesis of methyl 1,4-dihydroxy-2-naphthoate

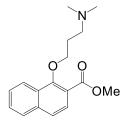
To a stirred solution of 1,4-dihydroxy-2-naphthoic acid (25.0 g, 122.44 mmol) and NaHCO₃ (12.86 g, 153.05 mmol) in DMF (200 mL), CH₃I (26.07 g, 183.66 mmol) was added dropwise for 10 minutes at 0 °C. Then the reaction mixture was stirred at rt for 16 hrs. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was poured into ice-cold water (800 mL) and stirred for 10 mins, filtered the off-white solid formed, washed with water (300 mL) and dried in vacuum to give methyl 1,4-dihydroxy-2-naphthoate (24.3 g, 91%). mp 194-195 °C; ¹H NMR (DMSO-*d*₆): $\delta_{\rm H}$ 11.44 (s, 1H), 9.19 (s, 1H), 8.32 (d, *J* = 8.1 Hz, 1H), 8.18 (d, *J* = 8.1 Hz, 1H), 7.63-7.50 (m, 2H), 7.14 (s, 1H), 3.98 (s, 3H) ppm; ¹³C NMR (125 MHz, DMSO-d6): $\delta_{\rm C}$ 170.87, 153.04, 145.48, 129.37, 129.06, 126.75, 125.19, 123.54, 122.52, 105.08, 104.13, 52.90 ppm.


Synthesis of methyl 1,4-bis(2-(diethylamino)ethoxy)-2-naphthoate, N6 (MDN-6)

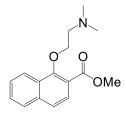
To a solution of methyl 1,4-dihydroxy-2-naphthoate (500 mg, 2.29 mmol) and 2diethylaminoethyl chloride hydrochloride (1.18 g, 6.87 mmol) in DMF (10 mL) K₂CO₃ (6.33 g, 45.83 mmol) was added and then stirred for 16 hrs at room temperature. The reaction mixture was poured into an ice-water (40 mL) and extracted into CH₂Cl₂ (1 x 50 mL). The combined organic layers were washed with water (1 x 50 mL), dried over anhydrous Na₂SO₄ and evaporated to give brown residue which was further purified by column chromatography (MeOH/CH₂Cl₂ = 0.5/9.5) as eluent to afford methyl 1,4-bis(2-(diethylamino)ethoxy)-2-naphthoate (150 mg, 16%) as colorless oil; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 8.49 (d, *J* = 8.3 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.0 (s, 1H), 7.85-7.82 (m, 1H), 7.75-7.72 (m, 1H), 4.09 (t, *J* = 5.95 Hz, 4H), 3.90 (s, 3H), 2.88 (t, *J* = 6.0 Hz, 4H), 2.52-2.50 (m, 8H), 1.0-0.94 (m, 12H) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 165.2, 156.7, 134.3, 130.8, 130.0, 128.2, 127.1, 124.9, 120.2, 116.3, 74.9, 52.9, 47.3, 12.3 ppm.


General Procedure for the synthesis of methyl 4-bromo-1-(2-(diethylamino)ethoxy)-2naphthoate, N2

To a solution of methyl 4-bromo-1-hydroxy-2-naphthoate (1.0 g, 3.56 mmol) and 2dimethylaminoethyl chloride hydrochloride (1.8 g, 10.67 mmol) in DMF (10 mL) K_2CO_3 (9.83 g, 71.15 mmol) was added and then stirred for 16 h at room temperature. The reaction mixture was poured into an ice-water (70 mL) and extracted into CH_2Cl_2 (1 x 100 mL). The combined organic layers were washed with water (1 x 100 mL), dried over anhydrous Na₂SO₄ and evaporated to give brown residue which was further purified by column chromatography (MeOH/CH₂Cl₂ = 0.25/9.75) as eluent to afford methyl 4-bromo-1-(2-(diethylamino)ethoxy)-2-naphthoate (812 mg, 60%) as a colorless oil; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 8.49 (d, *J* = 8.3 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.0 (s, 1H), 7.85-7.82 (m, 1H), 7.75-7.72 (m, 1H), 4.09 (t, *J* = 5.95 Hz, 2H), 3.90 (s, 3H), 2.88 (t, *J* = 6.0 Hz, 2H), 2.56-2.50 (m, 4H), 1.0-0.95 (m, 6H) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 165.2, 156.7, 134.3, 130.8, 130.0, 128.2, 127.1, 124.9, 120.2, 116.3, 74.9, 52.9, 47.3, 12.3 ppm;


Methyl 4-bromo-1-(3-(dimethylamino)propoxy)-2-naphthoate, N4

¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 8.49 (d, *J* = 8.3 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.0 (s, 1H), 7.85-7.82 (m, 1H), 7.75-7.72 (m, 1H), 4.09 (t, *J* = 5.95 Hz, 2H), 3.90 (s, 3H), 2.88 (t, *J* = 6.0 Hz, 2H), 2.56-2.50 (m, 4H), 1.0-0.95 (m, 6H) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 165.2, 156.7, 134.3, 130.8, 130.0, 128.2, 127.1, 124.9, 120.2, 116.3, 74.9, 52.9, 47.3, 12.3 ppm.


Methyl 1-(2-(diethylamino)ethoxy)-2-naphthoate, N1

¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 8.39 (d, *J* = 7.9 Hz, 1H), 7.99-7.98 (m, 1H), 7.77-7.73 (m, 2H), 7.68-7.62 (m, 2H), 4.10 (t, *J* = 6.0 Hz, 2H), 3.90 (s, 3H), 2.89 (t, *J* = 6.0 Hz, 2H), 2.56 (q, *J* = 14.2, 7.91 Hz, 4H), 0.99 (t, *J* = 2.0 Hz, 6H) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 166.7, 156.6, 136.5, 128.9, 128.6, 128.3, 127.2, 126.6, 123.9, 119.6, 74.6, 52.9, 52.7, 47.5, 12.4 ppm.

Methyl 1-(3-(dimethylamino)propoxy)-2-naphthoate, N3

¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 8.26-8.24 (m, 1H), 8.00-7.98 (m, 1H), 7.77-7.73 (m, 2H), 7.69-7.62 (m, 2H), 4.09 (t, *J* = 6.5 Hz, 2H), 3.90 (s, 3H), 2.48 (t, *J* = 7.0 Hz, 2H), 2.18 (s, 6H), 2.02-1.98 (m, 2H) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 166.7, 156.5, 128.9, 128.5, 128.4, 127.3, 126.6, 123.9, 123.6, 119.7, 74.6, 56.1, 52.6, 45.5, 28.2 ppm.

General Procedure for the Synthesis of methyl 1-(2-(dimethylamino)ethoxy)-2naphthoate, N5 To a solution of methyl 1-hydroxy-2-naphthoate (1.0 g, 4.95 mmol) and 2-dimethylaminoethyl chloride hydrochloride (2.14 g, 14.84mmol) in DMF (10 mL), K₂CO₃ (13.67 g, 98.91 mmol) was added and the mixture was then stirred for 96 h at room temperature. The reaction mixture was poured into an ice-water (80 mL) and extracted with CH₂Cl₂ (1 x 100 mL). Combined organic layers were washed with water (1 x 100 mL), dried over anhydrous Na₂SO₄, and evaporated to obtain a brown residue which was further purified by column chromatography with MeOH/CH₂Cl₂ = 0.25/9.75 as eluent to afford methyl 1-(2-(dimethylamino)ethoxy)-2-naphthoate (450 mg, 34%) as a yellow oil;. ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 8.34-8.32 (m, 1H), 8.01-7.98 (m, 1H), 7.78-7.74 (m, 2H), 7.69-7.63 (m, 2H), 4.14 (t, *J* = 5.65 Hz, 2H), 3.90 (s, 3H), 2.75 (t, *J* = 5.7 Hz, 2H), 2.27 (s, 6H) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 166.6, 156.6, 136.5, 129.0, 128.6, 128.3, 127.3, 126.6, 124.0, 123.7, 119.7, 74.1, 59.1, 52.7, 46.0 ppm.

Anti-mycobacterial activity assessment

The Alamar Blue assay:

the cultures of *M. tuberculosis* strains of H37Rv (ATCC 27294) and XDR (KMRC 00203-00197) were grown in Middlebrook 7H9 broth (BD, USA) supplemented with 10% albumin dextrose catalase (ADC) (BD, USA) and 0.2% glycerol and inoculated into 96-well plates at a final concentration of 1×10^5 cfu/ml in 200 µl of volume with preselected concentrations of MDN-6 or control drugs (200-0.02 µg/ml). As a positive control, we used an equal number of bacterial cells with solvent (DMSO), and as a negative control, we used the fresh medium without any bacteria. After 7 days of incubation at 37°C, 20 µl of freshly prepared 0.2% resazurin solution was provided to each well, and the plates were then incubated at 37°C for a further 48 hours, or until the blue color became pink. The lowest concentration at which the color change was inhibited was selected as the test compound's minimum inhibitory

concentration (MIC). Fluorescence readings were measured at 570 and 600 nm using a multilabel reader (Victor X3, Perkin Elmer, USA), and then the 50% minimum inhibitory concentrations (MIC₅₀) were determined.

The luminescent cell viability assay:

A luminescent cell viability assay kit (G8231, Promega) was used to enumerate the viability of H37Rv (ATCC 27294) and XDR cells (KMRC 00203-00197) in the presence of MDN-6 and the reference drugs. Briefly, in 96-well plates, 1×10^5 cfu/ml concentration of mycobacterial cells were treated with a preselected concentration of test drugs (200-0.02 µg/ml) in 200 µl Middlebrook 7H9 broth (BD, USA) supplemented with 10% ADC and 0.2% glycerol and were incubated at 37 °C for 7 days. Without any drugs, the equal concentration of bacterial cells with solvent (DMSO) was used as a positive control, while the fresh medium without any bacteria or drugs was used as a negative control. After completion of incubation, 50 µl drug-treated mycobacterial cells were collected from each well, thoroughly resuspended in 50 µl of freshly prepared BacTiter-Glo reagent, and further incubated at room temperature for 10 min on an orbital shaker. Then the luminescence was measured with a multi-label plate reader (Perkin Elmer Victor X3) and finally enumerated the viability of H37Rv and XDR cells from the luminescence reading.

CFU counting assay:

A CFU counting assay was used to determine the quantitative bactericidal efficiency of MDN-6 applying the prior published protocol. In brief, *M. tuberculosis* cultures in a final concentration of 1×10^5 cfu/ml were treated with preselected doses of test compounds in 96well plates. After 7 days of treatment at 37 °C, mycobacterial cells were diluted in fresh Middlebrook 7H9 broth (BD, USA), and spread onto Middlebrook 7H10 (BD, USA) agar plates. Mycobacterial colonies were then counted after completion of the incubation of 21 days.

Synergistic property evaluation

In 96-well plates, H37Rv and XDR cells at a concentration of 1×10^5 cfu/ml were exposed to 2-fold serial dilutions of each drug either alone or in combination. Plates were then incubated at 37 °C. Without any drug, the same concentration of bacterial cells with solvent (DMSO) was used as a positive control, while the fresh medium alone was used as a negative control. Following 7 days of incubation at 37°C, 20 µl of freshly prepared 0.2% resazurin solution was added to each well to make a final concentration of 0.02% for resazurin. Plates were then incubated at 37°C until the blue color changed to pink. Color changes were assessed, and fractional inhibitory concentration indices (FICI) were calculated using the following formula

$$FICI = \frac{MIC (antibiotic combined with compound)}{MIC (antibiotic alone)} + \frac{MIC (compound combined with antibiotic)}{MIC (compound alone)}$$

FIC index values were interpreted as follows: ≤ 0.5 , synergy; > 0.5 to 0.75, partial synergy; > 0.75 to 1.0, additive effect; > 1.0 to 4.0, indifference; and > 4.0, antagonism.

Post-antibiotic effect (PAE)

H37Rv (ATCC 27294) cells at their early log phase (OD₆₀₀ 0.2) was exposed to MDN-6, RIF, INH, STR, or EMB at the same concentration of 10 μ g/ml for 2 hours in Middlebrook 7H9 broth (BD, USA). The exact concentration of bacterial cells with only solvent (DMSO) was used as a positive control and only the fresh medium was used as a negative control. Antibiotics were removed after 2 hours of drug treatment at 37°C by washing three times with pre-warmed fresh Middlebrook 7H9 broth through centrifugation at 3600 g for 10 minutes. Finally, we resuspended the washed pellets in a fresh Middlebrook 7H9 broth and incubated at 37°C for two weeks and determined their growth saturation point (OD_{max}). OD_{600} was recorded for each culture before and after the exposure of drugs, as well as at 24-hour intervals afterwards. The PAE duration was calculated by subtracting the time needed for the antibiotic-treated culture to reach 50% of the drug-free culture's OD_{max} from the time required for the drug-free control culture to reach the similar point.

Determination of anti-nontuberculous mycobacterial (NTM) effect

All 27 NTM strains (1×10^5 cfu/ml) were inoculated into 96-well plates in 200 µl volume of Middlebrook 7H9 broth (BD, USA) containing a predetermined concentration of MDN-6 or control drugs (200-0.02 µg/ml) and incubated at 37°C for 1 to 7 days according to their doubling time. Fresh media with an equal amount of bacteria and solvent (DMSO) and only fresh media were used as positive control and negative control, respectively. After incubation, the lowest concentration of a test drug that inhibited the visual bacterial growth was determined as the MIC of the test drug.

Assessment of activity against gram-positive and gram-negative bacteria

Briefly, bacteria in a final concentration of 1×10^5 cfu/ml were prepared in cation-adjusted Muller Hilton broth (CAMHB, Sigma) containing predetermined concentrations (0.02-200 µg/ml) of test drugs were seeded into 96-well plates and incubated at 37°C for 18-24 hours. For *Corynebacterium* spp. and *Streptococcus* spp., we added an extra 3% lysed horse blood (LHB) to the CAMHB. Fresh media containing bacteria and solvent (DMSO) and fresh media without bacteria or DMSO were used as positive control and negative control, respectively. After incubation, the lowest concentration of a test drug that inhibited the visual bacterial growth was defined as the MIC of the test drug.

Appendix 1. Anti-tubercular activities of MDN-6 and control drugs against drug-resistant strains *M. tuberculosis* strains collected from the Korean Mycobacterium Resource Center (KMRC) (Cheongju, Chungbuk, Korea).

<i>a.</i> •	MIC (μg/ml)												
Strains	MDN-6	INH	RIF	STR	EMB	PZA							
XDR M. tuberculosis 1	0.02	12.5	>200	0.78	6.25	>200							
XDR M. tuberculosis 2	0.02	3.13	>200	50	6.25	>200							
XDR M. tuberculosis 3	0.19	3.13	>200	>200	6.25	>200							
XDR M. tuberculosis 4	0.19	12.5	6.25	0.78	6.25	>200							
XDR M. tuberculosis 5	0.19	12.5	>200	50	6.25	>200							
XDR M. tuberculosis 6	0.19	12.5	100	50	6.25	>200							
XDR M. tuberculosis 7	0.19	6.25	>200	0.78	12.5	>200							
XDR M. tuberculosis 8	0.19	12.5	>200	>200	6.25	>200							
XDR M. tuberculosis 9	0.19	50	>200	200	6.25	>200							
XDR M. tuberculosis 10	0.02	>200	6.25	< 0.09	6.25	>200							
XDR M. tuberculosis 11	0.19	6.25	>200	200	6.25	>200							
XDR M. tuberculosis 12	3.12	12.5	250	250	6.25	>200							
MDR M. tuberculosis 1	12.5	12.5	>200	100	6.25	>200							
MDR M. tuberculosis 2	12.5	12.5	>200	1.56	6.25	>200							
MDR M. tuberculosis 3	6.25	3.13	>200	0.39	3.13	>200							
MDR M. tuberculosis 4	12.5	25	>200	0.78	6.25	>200							
MDR M. tuberculosis 5	12.5	12.5	3.13	3.13	6.25	>200							
MDR M. tuberculosis 6	3.12	25	>200	25	6.25	>200							
MDR M. tuberculosis 7	6.25	50	>200	200	6.25	>200							
MDR M. tuberculosis 8	12.5	12.5	>200	3.13	6.25	>200							
MDR M. tuberculosis 9	25	25	>200	25	3.13	>200							
MDR M. tuberculosis 10	25	3.13	3.13	>200	0.78	>200							
MDR M. tuberculosis 11	0.02	12.5	3.13	3.13	6.25	>200							
MDR M. tuberculosis 12	0.02	12.5	250	100	6.25	>200							

Abbreviations: INH, isoniazid; RIF, rifampicin; STR, streptomycin; PZA, pyrazinamide; EMB, ethambutol; MIC, minimum inhibitory concentration; MDR, multidrug-resistant; XDR, extensively drug-resistant.

Appendix 2. *In vitro* MIC₅₀ results of MDN-6 and control drugs against drug-sensitive and single drug-resistant *M. tuberculosis* strains tested using the resazurin broth microdilution method.

Starting	MIC (μg/ml)												
Strains	MDN-6	INH	RIF	STR	EMB								
M. tuberculosis H37Ra	12.5	0.19	0.01	0.19	0.39								
<i>M. tuberculosis</i> H37Rv	12.5	0.19	0.04	0.19	0.78								
INH-resistant M. tuberculosis	3.12	25	0.04	0.19	0.78								
RIF-resistant M. tuberculosis	12.5	0.19	>200	0.19	0.78								
STR-resistant M. tuberculosis	25	0.19	0.04	12.5	0.78								
PZA-resistant M. tuberculosis	25	0.19	0.04	0.19	0.78								

Abbreviations: INH, isoniazid; RIF, rifampicin; STR, streptomycin; PZA, pyrazinamide;

EMB, ethambutol

Appendix 3. MICs of MDN-6 and three control drugs against 27 nontuberculous mycobacteria (NTM)

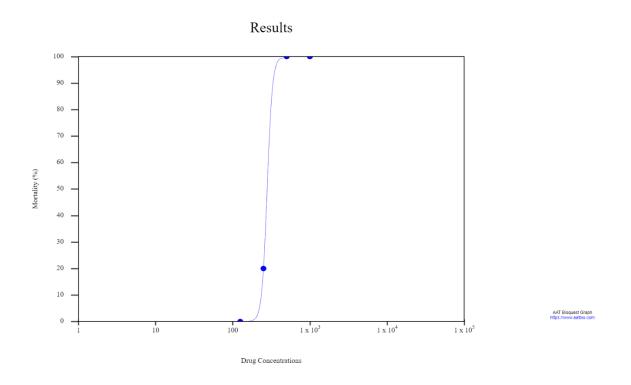
NTMs	Strain No.	MIC (µg/ml)									
IN 1 IVIS	Strain no.	MDN-6	INH	RIF	STR						
M. abscessus	KMRC 00136-61038	>50	>50	>50	25						
M. avium	KMRC 00136-41012	>50	25	1.56	3.13						
M. fortuitum	KMRC 00136-60002	>50	25	0.19	6.25						
M. intracellulare	KMRC 00136-43007	>50	25	< 0.09	0.78						
M. marinum	KMRC 00136-21108	12.5	25	<0.09	< 0.09						
M. phlei	KMRC 00136-19002	>50	>50	25	0.19						
M. szulgai	KMRC 00136-61005	>50	1.56	< 0.09	0.19						
M. xenopi	KMRC 00136-42003	>50	1.56	0.19	0.19						

M. gilvum	KCTC-19423	>50	12.5	0.19	0.19
M. smegmatis	KCTC-9108	>50	25	25	0.19
M. bovis	NCCP 14790	>50	0.19	< 0.09	0.19
M. kansasii	KMRC 00136-20004	12.5	0.19	0.04	0.19
M. arupense	KMRC 00136-15004	>50	50	0.1	0.1
M. aubagnense	KMRC 00136-72001	>50	>50	1.56	>50
M. bolletti	KMRC 00136-52003	>50	>50	>50	25
M. colombiense	KMRC 00136-86001	>50	12.5	0.19	0.78
M. conceptionense	KMRC 00136-79001	>50	25	25	3.12
M. chitae	KMRC 00136-80001	>50	12.5	6.25	>50
M. gordonae	KMRC 00136-32003	>50	>50	3.12	>50
M. goodie	KMRC 00136-28003	>50	25	>50	0.19
M. heraklionease	KMRC 00136-81001	>50	>50	0.19	50
M. kyorinense	KMRC 00136-82002	>50	3.12	50	0.78
M. masisiliense	KMRC 00136-13017	>50	12.5	0.19	0.78
M. marseiliense	KMRC 00136-83001	>50	>50	>50	25
M. neoaurum	KMRC 00136-18001	>50	3.12	0.19	0.78
M. paregrinum	KMRC 00136-75003	>50	6.25	25	3.12
M. phocaicum	KMRC 00136-22005	>50	>50	25	6.25
All was interest WMDC V	maan Mianaanaaniana Dagaya			7 0	. 11

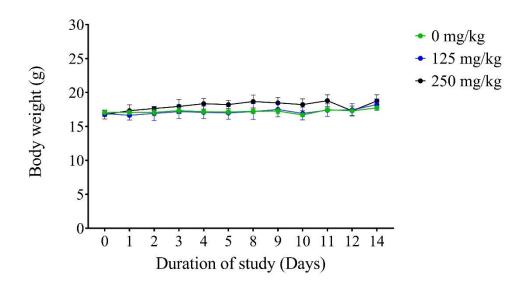
Abbreviations: KMRC, Korean Microorganism Resource Center; KCTC, Korean Collection

for Type Cultures. NCCP, National Culture Collection for Pathogens

Appendix 4.	. Effect	of te	est compounds	against	gram-positive	and	gram-negative	bacterial
strains								


Bacterial Strains		MIC values (µg/ml)											
Gram-negative		MDN-6	INH	RIF	STR	VAN	MET						
Acinetobacter baumannii	14782	>50	>50	3-6	6-12	>50	3.12-6.25						
Citrobacter freundii	14766	>50	>50	>50	1.5-3	>50	>50						
Enterobacter aerogenes	14761	>50	>50	6-12	3-6	>50	>50						
Escherichia coli	14762	>50	>50	6-12	>25	>50	>50						
Escherichia coli O157	14541	>50	>50	6-12	6-12	>50	>50						
Klebsiella pneumoniae	14764	>50	>50	6-12	3-6	>50	>50						
Proteus mirabilis	14763	>50	>50	3-6	6-12	>50	>50						
Proteus vulgaris	14765	>50	>50	6-12	25	>50	>50						
Pseudomonas aeruginosa	14781	>50	>50	24	>25	>50	>50						

)))
)
)
)
)
)
)
T
6
)
)
)
-3
-0.8
-1.6


Abbreviations: NCCP, National Culture Collection for Pathogens

Grou	Dose	No. o	Days after dosing														
р	(mg/k g)	f ani mals	0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4
G1	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G2	125	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G3	250	5	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
G4	500	5	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
G5	1000	5	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix 5. Summary of deaths during the acute oral toxicity test.

Appendix 6. Dose-response mortality curve of oral MDN-6 in BALB/c mice. Percentage lethality values are plotted against the concentration of the drug.

Appendix 7. Body weights of mice during the acute oral toxicity test for MDN-6.

Sex	Group	Dose (mg/kg)	No. of animals	Chinical	linical 0) af		Hours (Day 0) after I dosing			Days after dosing													
				0	0.5	1	2	4	6	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	G1	0	5	NOA	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	G2	125	5	NOA	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	G3	250	5	NOA	5	0	0	0	0	5	4	0	0	0	0	0	0	0	0	0	0	0	0
				Abnormal gait	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Irregular respiration	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-				Prone position	0	2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Death	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Female	G4	500	5	Abnormal gait	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Irregular respiration	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Prone position	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Death	0	5	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0
	G5	1000	5	Abnormal gait	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Irregular respiration	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Prone position	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Death	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix 8. Summary of clinical signs during the acute oral toxicity test.

Abbreviation: NOA, No observable abnormality